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This supplement is organized as follows: Section S1 provides additional figures to complement
the description of the SecureMA protocol. Section S2 introduces the details of the meta-analysis
and the specific workflows associated with SecureMA. Section S3 describes the three datasets
we utilize to evaluate the SecureMA protocol. Section S4 provides additional experiments on
the computational accuracy by controlling for tunable parameters associated with the protocol.
Finally, Section S5 describes SecureMA in greater detail, while covering the specific technical
aspects regarding how each computation is securely performed to support meta-analysis.

S1 Supplementary Figures
This section provides additional figures to describe the SecureMA protocol in greater detail.

Specifically, Fig. S1 illustrates the Setup step around cryptographic keys in the protocol
(described in the main manuscript, Section 2.2). We emphasize that, as illustrated later in Fig.
S2, the Key Manager who facilitates key generation and distribution is isolated from the rest of
the SecureMA system and thus has no access to any data or computations. In practice, this role
could be played by a semi-trusted third-party, who is outside the set of participants. For instance,
the role could be assumed by a neutral organization with a good reputation in key management,
a trustworthy computing module, or even a virtual party representing a distributed and secure
mechanism for key generation among many protocol participants [Kate et al., 2009].

Fig. S2 presents the complete activity diagram of SecureMA in sequential order, including
the Setup and Secure Computation steps (main manuscript, Section 2).

S2 Meta-analysis and Protocol Participants
Here, we provide additional explanation regarding the computation of meta-analysis, as well as
the specific workflow details of SecureMA that are not covered in the main manuscript.

S2.1 Meta-analysis of Genetic Association Studies
To the best of our knowledge, there is no easy and efficient method for performing the square root
operation securely (in the denominator of meta-analysis equation). Thus, we square Equation 1
in the main manuscript for easier implementation:

Z2 = (
∑
i

βiwi)2
/∑

i

wi , (1)
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Figure S1: During the Setup step of the SecureMA protocol, encryption/decryption keys are
generated and distributed. The public key (for encryption) is broadcast to the mediator and
local sites, while the private key (for decryption) is split into secret shares (SK1, ..., SKK)
which are securely transmitted to the respective data managers.

where the final square root, as well as conversion from Z-score to p-value, of the result of the
meta-analysis is performed by the software running on the computer of the scientist issuing the
inquiry.

S2.2 Protocol Participants
The major participants of the secure meta-analysis protocol and their roles are summarized
below:

• A Scientist (e.g., genomicist) issues meta-analysis queries to the protocol and receives the
encrypted final results which only he can fully decrypt.

• The Local Sites are the individual sites who collect genomic and phenotypic data, as well
as conduct their local association studies.

• (Optional) The Data Managers (e.g., coordination centers in practice) manage the (en-
crypted) genomic information on behalf of local sites. This optional optimization makes
the protocol more practical by supporting meta-analysis while reducing the number of par-
ticipants required at runtime (e.g., one manager can delegate multiple local sites). The
data managers only have limited decryption capabilities, as introduced later.

• The Mediator computes the secure meta-analysis equations and responds to the scientist’s
queries with encrypted results.

S3 Details of Study Data
Our study uses data from three recent multi-site genotype-phenotype association studies. Here
we provide a detailed description of these datasets.

eMERGE hypothyroidism study. The first dataset is from the Electronic Medical
Records and Genomics (eMERGE) network ([McCarty et al., 2011]). It consists of five different
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Figure S2: The activity diagram of the SecureMA protocol. Denoted in gray boxes is the
one-time Setup step covering key distribution and submission of encrypted site statistics (main
manuscript, Section 2.2). In a typical running, a scientist issues a study inquiry to start the
protocol, and obtains the study result in the end. In the figure, E(data) and D(data) correspond
to the encryption and decryption of data, respectively. There can be multiple local sites and data
managers. The key manager is isolated from the rest of the system and his only involvement is
key generation and distribution.
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sites (e.g., sub-studies) who contributed data: i) the Group Health Cooperative, ii) the Marsh-
field Clinic, iii) the Mayo Clinic, iv) Northwestern University Medical Center, and v) Vanderbilt
University Medical Center. Local-site studies were adjusted for birth decade and sex following
the approach described in ([Denny et al., 2011]).

PAGE obesity study. The second dataset is from the Population Architecture using Ge-
nomics and Epidemiology (PAGE) study ([Matise et al., 2011]). It consists of 37,823 European
Americans and 15,415 African Americans, and spans across six different sites: i) the Atheroscle-
rosis Risk in Communities Study (ARIC), ii) the Coronary Artery Risk in Young Adults (CAR-
DIA), iii) the Cardiovascular Health Study (CHS), iv) the Epidemiologic Architecture for Genes
Linked to Environment (EAGLE) accessing the National Health and Nutrition Examination
Surveys (NHANES), v) the Multiethnic Cohort (MEC), and vi) the Women’s Health Initia-
tive (WHI). Local-site studies were completed following the processing procedures described in
([Fesinmeyer et al., 2013]).

EAGLE obesity study. The third dataset was from the Epidemiologic Architecture for
Genes Linked to Environment (EAGLE) group, which is a sub-site of PAGE ([Haiman et al., 2012]).
EAGLE itself can be divided into two sub-studies associated with the National Health and Nu-
trition Examination Surveys (NHANES): i) NHANES III and ii) NHANES 1999-2002. This
study contains 14,998 DNA samples and spans several ethnicities (e.g., non-Hispanic white, non-
Hispanic black, Mexican-American, and others).

S4 Computational Accuracy in a Controlled Setting
In the main text, we pointed out that the secure computation results were close to the "true"
association values (from the original publications), but not perfect. We note that in replication
studies, it is not uncommon for there to be minor variability in the statistical routines performed.
Thus, to present a more controlled evaluation on the computational accuracy, we performed
additional comparisons with a non-secure meta-analysis as the baseline (i.e., results taken directly
from the widely-used METAL software [Willer et al., 2010] instead of using the reported results
from their original studies).

The comparisons are reported as QQ-plots on a negative logarithmic scale (Fig. S3). It can
be seen that our secure results are extremely close to the non-secure results. Specifically, a linear
regression with the y-intercept forced to zero, yielded both a slope and correlation coefficient of
∼1.000 for all three datasets. These results lend further evidence that our SecureMA protocol is
accurate.

S5 Details on Securely Computing Meta-analysis
Here we provide the technical details regarding the various sub-protocols underpinning the secure
meta-analysis computation.

S5.1 (Threshold) Paillier Encryption Scheme
In the main text, we briefly mentioned that submissions of local-site statistics are protected
leveraging encryption. Here we describe the relevant cryptographic schemes in SecureMA.

We leverage a "semantically secure" homomorphic public-key encryption (HPE) framework.
Generally speaking, in a public-key encryption system, a person, say Alice, generates two keys:
1) a public key, which is made available to another entity, say Bob, who wishes to communicate
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Figure S3: A controlled comparison of the P-values derived from a non-secure and secure meta-
analysis protocol. These results are based on (a) 100 SNPs from eMERGE, (b) 40 SNPs from
PAGE, and (c) 216 SNPs from EAGLE.
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messages to Alice in an encrypted manner (i.e., the ciphertext) and 2) a private key, which is
known only to Alice and is applied to decrypt the ciphertext sent by Bob.

An encryption scheme is said to be semantically secure when it is infeasible for an adversary
(with finite computational capability), say Mallory, to gain knowledge about a message when it
observes a ciphertext and the corresponding public encryption key. This property implies that
even when the same message is encrypted multiple times, the ciphertexts will be indistinguishable
to Mallory. In other words, if Bob and Charlie encrypt the same genotype-phenotype association
statistics, say a regression coefficient with a value of 10 using the same public key, then the
resulting ciphertexts will appear to be different. This mechanism further enhances the security
of the encryption scheme (e.g., by protecting against attacks which leverage a pre-computed
lookup table with raw data and their corresponding encryptions).

In addition, we require the encryption framework to possess an "additive homomorphic"
property. This enables the computation of the encrypted sum of two messages to be completed
using only the corresponding ciphertexts (e.g., without decryption).

The Paillier crypto-system ([Paillier et al., 1999]) is a probabilistic public key encryption
protocol with a high confidentiality guarantee. Its additive homomorphic property enables direct
support for several arithmetic operations, including addition and multiplication by a constant
value, over encrypted data.

The following provides a basic introduction to Paillier encryption:

• Keys: Let n = pq, where p and q are large prime numbers, and λ = lcm(p−1, q−1), where
lcm(.) denotes the function for least common multiple. We define function L(x) = (x−1)/n
and let g be an integer, such that gcd(L(gλmodn2), n) = 1, where gcd(.) is the function
for greatest common divisor. The public and private cryptographic keys then consist of
(n, g) and (p, q, λ), respectively. Note that there is only one private key.

• Encryption: The encryption of a message m (e.g., the value of a regression coefficient) into
a ciphertext c is accomplished by E(m, r) = gmrnmodn2, where g and n correspond to
the public key, and r is a random value. For future reference, we will simply refer to this
value as E(m).

• Decryption: The decryption of a ciphertext c is computed as:

D(c) = L(cλ mod n2)
L(gλ mod n2) mod n

Public key crypto-systems are vulnerable in that the system can be compromised if a private
key is disclosed (either unintentionally or maliciously). To enhance the security of the system
and ensure that the participants cannot easily violate the protocol, a private key can be split into
l distinct "shares", where each share is provided to a different participant (e.g., a data manager in
our protocol). This variation on cryptography is called a "threshold" system because it requires
at least w out of the l participants to correctly decrypt information for Alice. When fewer than w
participants attempt to decrypt, the system will be unable to reveal the corresponding message. A
threshold version of the Paillier crypto-system was introduced in ([Cramer et al., 2001]) and was
utilized in our protocol. In practice, we assume that the majority of participants in cryptographic
systems are honest and thus, it is unlikely collusion will lead to illegitimate decryption. To
achieve good security in practice, we set w > 2

3 l according to the Byzantine fault tolerance
principle [Lamport et al., 1982].

For the purposes of the SecureMA protocol, these participants correspond to the data man-
agers who help maintain the encrypted genotype-phenotype association statistics. To perform
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decryption, the participants independently decrypt the result of the meta-analysis to obtain
partial decryptions. The scientist (i.e., inquiry issuer) will complete the decryption process by
aggregating these partial decryptions.

S5.2 SHARES: Converting Encryptions to Secret Shares
The secure logarithm protocol (a step of secure division) introduced later requires inputs to
be in the form of secret shares (i.e., data split and distributed across different participants for
protection), while all data in our protocol are encrypted using the Paillier crypto-system. We
propose the following SHARES sub-protocol to convert Paillier encryptions into two-party secret
shares (i.e., two participants collaboratively keep the secret). Given an encryption E(x), the goal
is to find two random values x1 and x2 (to be held by two participants respectively), such that
x1 + x2 = x. These values are randomized to ensure it is not possible to predict the value of one
from the other. This is accomplished as follows. First, a data manager generates a random value
rand to obfuscate the given (encrypted) value E(x) by computing E(x + rand) (via the secure
summation sub-protocol ADD introduced later). The resulting encryption E(x + rand) is then
transmitted to the mediator. Later, a decryption process helps obtain the mediator’s data share
x2 = x+ rand, while the data manager holds his share x1 = −rand.

S5.3 Garbled Circuits for Secure Division
In our protocol, we leverage a garbled circuit ([Yao, 1982]) (for secure computation) to perform
part of the secure division operation introduced below. This approach allows two participants
to collaboratively evaluate an arbitrary function on their individual data without disclosing
anything other than the final output . This is enabled by implementing the function to compute
as a binary circuit and the security is achieved by randomizing (garbling) the data in the circuit.
We design our own circuits and enhance the low-level FastGC framework ([Huang et al., 2011])
for execution (released as open-source software).

S5.4 Secure Arithmetic Operations
The Paillier crypto-system supports secure summation through an additive homomorphic prop-
erty. The secure addition sub-protocol, ADD, is defined as follows: given two messages m1,m2
(and n being the Paillier field size), the encryption of sum (m1 +m2) can be computed as:

E(m1 +m2) = E(m1) · E(m2) mod n2

It is also straightforward to implement multiplication of an encrypted value by a known
constant in the Paillier crypto-system. The multiplication-by-a-constant sub-protocol (MULC )
proceeds as follows. Suppose we are provided with encryption E(m) of message m and need to
compute E(k ·m), where k is a known constant. This can be accomplished by computing:

E(k ·m) = (E(m))k mod n2

Secure subtraction (SUB sub-protocol) can be achieved by taking advantage of the multiplication-
by-constant and addition protocols described above. In brief, given two encryptions E(m1), E(m2),
we can compute the subtraction as:

E(m1 −m2) = ADD(E(m1), MULC(m2,−1))

It can further be observed in Equation 1 that a meta-analysis requires the final division of
a numerator by a denominator. However, there is no existing protocol for directly computing
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the division of two Paillier-encrypted numbers. We therefore choose to convert the division
operation (denoted as DIV sub-protocol) into a subtraction problem using a secure logarithmic
transformation. For simplicity, we denote: a =

∑
i

βiwi and b =
∑
i

wi. Via the logarithmic

transformation, the goal in Equation 1 becomes:

lnZ2 = ln a
2

b
= 2 ln a− ln b (2)

We leverage the secure logarithm sub-protocol described below to compute ln a and ln b for
the transformed division operation. The final Z2 can be easily derived by taking the exponential,
exp(.), on the final subtraction result.

S5.5 Secure Logarithmic Transformation
As described earlier, secure logarithmic transformation is utilized in our protocol to perform
the division operation. Our ln x transformation builds upon the secure ln(x) sub-protocol in
([Lindell et al., 2000]). Given input x, which is composed of secret shares x1 and x2 from two
participants (following the SHARES sub-protocol), a two-phase process is applied to approximate
the logarithm and output two secret shares of the result.

More specifically, x is approximated by 2y, with a relative error of ε :

ln x = ln(2y(1 + ε)) = y ln 2 + ln(1 + ε) (3)

Based on this representation, approximating ln x requires securely computing the two terms
in Equation 3, which is facilitated by the two-phase process described below.

S5.5.1 Logarithm Phase 1: Rough Estimate via Garbled Circuits

In the first phase, the logarithm ln x is approximated by 2y using a garbled circuit evaluation to
protect sensitive data. The output of this phase contains two portions, γ and α, each of which is
composed of two secret shares obfuscated to prevent disclosure and is scaled up (i.e., multiplied
by a power of 2 and truncated) to avoid numbers with decimals and use only integers:

γtrue + γrand = 2N · y ln 2 (4)

αtrue + αrand = 2N · ε (5)

Equation 4 approximates the first term in Equation 3, which is a rough estimate of ln x. The
terms are scaled up to avoid decimal values because the computation is performed over encrypted
data, which requires the operands to be integers. Here, the term 2N is as a scaling factor, where
N is the upper bound for the exponent estimate y.

Equation 5 denotes the scaled relative error of the approximation, and will be applied in the
next phase to boost the accuracy of approximating Equation 3.

Since a garbled circuit evaluation involves two participants and no meaningful information
should be disclosed to any single participant, we adopt random values γrand and αrand contributed
by one of the two participants in the computation for proper protection.

At the end of this process, one participant will hold αrand and γrand, while a second partici-
pant will be in possession of αtrue and γtrue, as illustrated in Equations 4 and 5.
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S5.5.2 Logarithm Phase 2: Refined Estimate via Taylor Series

In the second phase, we further refine our ln x approximation by estimating the second term in
Equation 3. This is accomplished via an oblivious polynomial evaluation ([Naor et al., 1999]),
such that a secure polynomial from one participant is computed on the data contributed by the
other participant without disclosing additional information. To perform the approximation, ε is
substituted with αtrue+αrand

2N (derived from Equation 5). Next, we apply the following Taylor
series (with proper scaling up to avoid fractional values):

ln(1 + ε) · 2Nklcm(2, ..., k)

≈
k∑
i=1

(−1)i−12N(k−i) · lcm(2, ..., k)
i

· (αtrue + αrand)i
(6)

The polynomial on the right side (denoted as Q(αtrue)) will be expanded and evaluated
leveraging our MULC and ADD sub-protocols. The result at this point is still encrypted.

S5.5.3 Result Assembly for Logarithm

Based on the results from the previous two phases, the final result of ln(x) is obtained through
an assembly process. First, the γ’s in Equation 5 are scaled up by a factor 2N(k−1)lcm(2, .., k):

(γrand + γtrue) · 2N(k−1)lcm(2, . . . , k) = y ln 2 × 2Nklcm(2, . . . , k) (7)

Next, the scaled γ’s are encrypted and securely summed via Equations 7 and 6:

E((ln(1 + ε) + y ln 2) · 2Nklcm(2, . . . , k))
≈ E(ln x · 2Nklcm(2, . . . , k))

(8)

After obtaining the encryptions of scaled-up ln a and ln b, we can compute the scaled-up
E(lnZ2) via Equation 2. The final Z-score (in decimal) can easily be derived after decryption and
scaling the result back down. And the desired p-value can be obtained following the instruction
in Section S2.1.
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